г. Екатеринбург
Анатолия Мехренцева, д. 38

Телескоп Levenhuk Ra RC200-F8 Carbon OTA

Ричи-Кретьен. Диаметр объектива: 200 мм. Фокусное расстояние: 1600 мм
  • Тип телескопа — зеркально-линзовый
  • Диаметр объектива, мм — 200
Узнать больше
Телескоп Levenhuk Ra RC200-F8 Carbon OTA
  • Телескоп Levenhuk Ra RC200-F8 Carbon OTA
42 990 р

Описание телескопа Levenhuk Ra RC200-F8 Carbon OTA

Levenhuk Ra 200RC F8 Carbon OTA – труба телескопа системы Ричи-Кретьена с апертурой 200 мм и фокусным расстоянием 1600 мм. Труба рефлектора выполнена из углепластика для снижения веса и уменьшения зависимости изменения фокусного расстояния от температурных колебаний среды. Применение углепластика также позволяет трубе телескопа быстрее приходить в тепловое равновесие, т.к. данный сорт углепластика обладает не только малым коэффициентом теплового линейного расширения (КТЛР), но и высокой теплопроводностью.

Данная труба предназначена для любителей астрофотографии. Особенностями данной модели трубы Ричи-Кретьена Levenhuk Ra являются 99% отражающее диэлектрическое покрытие ГЗ и двухскоростной фокусер на линейном подшипнике.

Относительно малые линейные размеры трубы предъявляют несколько меньшие требования к жесткости монтировки по сравнению с телескопами Ньютона.

Характеристики телескопа Levenhuk Ra RC200-F8 Carbon OTA

Характеристики

Тип телескопа
Тип телескопа в зависимости от конструкции его оптической системы.
Существуют следующие типы телескопов: рефракторы, рефлекторы и зеркально-линзовые, или катадиоптрические, телескопы.
Для создания увеличенного изображения небесных объектов в рефракторах используются оптические линзы, работа которых основана на явлении рефракции (или преломления) света. Такой телескоп обычно состоит из нескольких линз. Изготовление линз большого диаметра обходится дорого, поэтому диаметр объектива у линзовых телескопов обычно не превышает 150 мм (подробнее см. "Диаметр объектива").
Плюсами рефракторов считаются надежная конструкция (благодаря закрытой трубе пыль не скапливается внутри), простота эксплуатации, отсутствие центрального экранирования (которое встречается в зеркальных телескопах), что позволяет получать более контрастное изображение.
К минусам относят сравнительно небольшой диаметр объектива и, как следствие, невысокую светосилу, наличие хроматических аберраций (цветовых искажений). С хроматическими аберрациями можно успешно бороться при помощи более сложной оптической схемы (см. ахромат и апохромат, "Оптическая схема"), однако это приводит к резкому росту стоимости изделия.
Телескопы-рефракторы диаметром 80-100 мм рекомендуются начинающим любителям астрономии, а для детей подходят недорогие модели диаметром 70-80 мм. Телескопы-рефракторы обеспечивают хорошую детализацию изображения, что позволяет задействовать их для изучения поверхности Луны.
Рефлекторы могут различаться по конструкции, однако все они собирают свет при помощи зеркала. Это позволяет делать такие телескопы значительно более компактными, светосильными и свободными от хроматических аберраций. Диаметр главного зеркала у телескопа-рефлектора достигает 250 мм и более. Дело в том, что изготовление большого зеркала обходится дешевле, чем производство линзы такого же размера.
Недостатками рефлекторов являются длинная открытая труба (потоки воздуха портят изображение, на зеркало попадает пыль), относительная недолговечность зеркал (со временем они темнеют и портят изображение) и заметная потеря света при отражении и при центральном экранировании (пропускание света рефлектором редко превышает 70 %).
Рефлекторы обеспечивают самую низкую цену для телескопов с большой апертурой и рекомендуются для наблюдения объектов глубокого космоса.
У зеркально-линзового, или катадиоптрического, телескопа изображение формируется сложным объективом, содержащим как зеркала, так и линзы. Производить используемые в катадиоптрическом телескопе сферические зеркала технологически значительно проще, чем параболические или гиперболические, применяемые в телескопах-рефлекторах. Однако само по себе сферическое зеркало создает значительные сферические аберрации и непригодно для использования. В зеркально-линзовом типе телескопа аберрации сферического зеркала устранены за счет добавления в оптическую схему линзы особой кривизны — корректора. Зеркально-линзовые телескопы, по сравнению с рефлекторами, имеют более короткую трубу, в них исправлены сферические аберрации. Однако из-за большего количества оптических элементов они обладают худшей яркостью и проницаемостью.
Катодиоптрические телескопы подходят для наблюдения глубокого космоса, а также могут использоваться для фотосъемки небесных объектов.
  • зеркально-линзовый
Диаметр объектива, мм
Диаметр светособирающей линзы или главного зеркала телескопа.
Многие астрономические объекты излучают очень мало света, поэтому их не видно невооруженным взглядом. Задача телескопа не только увеличивать изображение, но и собирать как можно больше света. Величина диаметра объектива (также именуемого апертурой, или световым диаметром) определяет яркость и четкость всего, что можно наблюдать в телескоп. Чем больше апертура телескопа, тем выше его светосила, и тем шире возможности для наблюдения, которые он обеспечивает. Однако стоит помнить, что повышение диаметра объектива неизбежно ведет к увеличению габаритов, массы и стоимости телескопа.
Известны примерные значения апертуры для различных видов наблюдения. Для изучения поверхности Луны рекомендуются рефракторы с диаметром объектива 70-120 мм, для наблюдения за объектами солнечной системы нужна апертура 120-150 мм, для работы с туманностями и другими объектами глубокого космоса требуется апертура не менее 200 мм. Приобретение телескопа с еще большей апертурой оправдано, если планируется производить наблюдения в малонаселенной местности, где ночное небо максимально темное.
При выборе телескопа также нужно иметь в виду, что яркость получаемого изображения зависит не только от апертуры, но и от оптической системы. Например, из-за больших потерь в зеркальных системах 100 мм рефрактор примерно соответствует 120-130 мм рефлектору.
Диаметр объектива определяет максимальное полезное увеличение телескопа (см. "Макс. полезное увеличение").
200
Фокусное расстояние объектива, мм
Оптическая схема телескопа обычно состоит из двух частей — объектива и окуляра. Объектив создает промежуточное изображение удаленного объекта в фокальной плоскости, а окуляр подготавливает изображение для просмотра глазом.
Расстояние от оптического центра объектива до фокальной плоскости называется фокусным расстоянием.
От фокусного расстояния объектива зависит увеличение телескопа. Увеличение телескопа можно вычислить, разделив фокусное расстояние объектива на фокусное расстояние окуляра.
От фокусного расстояния также зависят относительное отверстие и светосила объектива. Светосила равна отношению диаметра объектива к фокусному расстоянию. Светосила характеризует количество света, которое объектив способен "захватывать". Чем выше эта величина, тем лучше видно в телескоп слабосветящиеся небесные объекты.
Чем больше фокусное расстояние, тем меньше светосила телескопа, но тем выше его увеличение. Чрезмерное увеличение при малой светосиле не имеет смысла, поэтому важно соблюдать баланс фокусного расстояния и остальных характеристик телескопа.
1600
Относительное отверстие
Величина относительного отверстия объектива.
Оптическая схема телескопа обычно состоит из двух частей — объектива и окуляра. Объектив создает промежуточное изображение удаленного объекта в фокальной плоскости, а окуляр подготавливает изображение для просмотра глазом.
Относительное отверстие равно отношению апертуры (диаметра объектива) к его фокусному расстоянию. Обычно эта величина обозначается как "1:8". Относительное отверстие показывает светосилу объектива, то есть его способность собирать максимальное количество света. Самыми светосильными считаются короткофокусные телескопы с относительным отверстием 1:4-1:6, длиннофокусные объективы обладают невысокой светосилой 1:10-1:15, телескопы с относительным отверстием 1:6-1:10 считаются универсальными.
f/8

Установка

Материал штатива
Основная задача штатива – обеспечить надежную фиксацию телескопа и минимизировать возможную тряску во время наблюдения за небесными объектами. Для этого лучше всего подходят массивные штативы, изготовленные из стали.
Если вы планируете брать телескоп в поездки, то стоит обеспокоиться весом телескопа и штатива. Для этих целей подойдут штативы из алюминиевого сплава.
пластик
Фокусер
  • Крейфорда

Дополнительно

Вес, кг 7,3