г. Екатеринбург
Анатолия Мехренцева, д. 38

Телескоп Levenhuk Skyline Travel 50

  • Тип телескопа — рефрактор
  • Диаметр объектива, мм — 50
  • Посадочный диаметр окуляра, дюйм — 1,25
  • Увеличение линзы Барлоу, х — 3
  • Монтировка — азимутальная
  • Искатель — оптический
  • Уровень пользователя — для начинающих, для детей
Узнать больше
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
  • Телескоп Levenhuk Skyline Travel 50
Купить
12 990 р
10 990 р
  • Поставляется под заказ в течение 3 — 5 дней
  • Доставим прямо до квартиры
  • Привезем чек и гарантийный талон

Описание телескопа Levenhuk Skyline Travel 50

Особенности:

  • Телескоп для планетарных и наземных наблюдений
  • Компактная укороченная труба
  • Облегченная конструкция
  • Увеличение с комплектными аксессуарами – 135х
  • Просветленная оптика
  • Азимутальная монтировка
  • Отличный выбор для детей и начинающих
  • В комплекте удобный рюкзак для переноски

Характеристики телескопа Levenhuk Skyline Travel 50

Характеристики

Тип телескопа
Тип телескопа в зависимости от конструкции его оптической системы.
Существуют следующие типы телескопов: рефракторы, рефлекторы и зеркально-линзовые, или катадиоптрические, телескопы.
Для создания увеличенного изображения небесных объектов в рефракторах используются оптические линзы, работа которых основана на явлении рефракции (или преломления) света. Такой телескоп обычно состоит из нескольких линз. Изготовление линз большого диаметра обходится дорого, поэтому диаметр объектива у линзовых телескопов обычно не превышает 150 мм (подробнее см. "Диаметр объектива").
Плюсами рефракторов считаются надежная конструкция (благодаря закрытой трубе пыль не скапливается внутри), простота эксплуатации, отсутствие центрального экранирования (которое встречается в зеркальных телескопах), что позволяет получать более контрастное изображение.
К минусам относят сравнительно небольшой диаметр объектива и, как следствие, невысокую светосилу, наличие хроматических аберраций (цветовых искажений). С хроматическими аберрациями можно успешно бороться при помощи более сложной оптической схемы (см. ахромат и апохромат, "Оптическая схема"), однако это приводит к резкому росту стоимости изделия.
Телескопы-рефракторы диаметром 80-100 мм рекомендуются начинающим любителям астрономии, а для детей подходят недорогие модели диаметром 70-80 мм. Телескопы-рефракторы обеспечивают хорошую детализацию изображения, что позволяет задействовать их для изучения поверхности Луны.
Рефлекторы могут различаться по конструкции, однако все они собирают свет при помощи зеркала. Это позволяет делать такие телескопы значительно более компактными, светосильными и свободными от хроматических аберраций. Диаметр главного зеркала у телескопа-рефлектора достигает 250 мм и более. Дело в том, что изготовление большого зеркала обходится дешевле, чем производство линзы такого же размера.
Недостатками рефлекторов являются длинная открытая труба (потоки воздуха портят изображение, на зеркало попадает пыль), относительная недолговечность зеркал (со временем они темнеют и портят изображение) и заметная потеря света при отражении и при центральном экранировании (пропускание света рефлектором редко превышает 70 %).
Рефлекторы обеспечивают самую низкую цену для телескопов с большой апертурой и рекомендуются для наблюдения объектов глубокого космоса.
У зеркально-линзового, или катадиоптрического, телескопа изображение формируется сложным объективом, содержащим как зеркала, так и линзы. Производить используемые в катадиоптрическом телескопе сферические зеркала технологически значительно проще, чем параболические или гиперболические, применяемые в телескопах-рефлекторах. Однако само по себе сферическое зеркало создает значительные сферические аберрации и непригодно для использования. В зеркально-линзовом типе телескопа аберрации сферического зеркала устранены за счет добавления в оптическую схему линзы особой кривизны — корректора. Зеркально-линзовые телескопы, по сравнению с рефлекторами, имеют более короткую трубу, в них исправлены сферические аберрации. Однако из-за большего количества оптических элементов они обладают худшей яркостью и проницаемостью.
Катодиоптрические телескопы подходят для наблюдения глубокого космоса, а также могут использоваться для фотосъемки небесных объектов.
  • рефрактор
Диаметр объектива, мм
Диаметр светособирающей линзы или главного зеркала телескопа.
Многие астрономические объекты излучают очень мало света, поэтому их не видно невооруженным взглядом. Задача телескопа не только увеличивать изображение, но и собирать как можно больше света. Величина диаметра объектива (также именуемого апертурой, или световым диаметром) определяет яркость и четкость всего, что можно наблюдать в телескоп. Чем больше апертура телескопа, тем выше его светосила, и тем шире возможности для наблюдения, которые он обеспечивает. Однако стоит помнить, что повышение диаметра объектива неизбежно ведет к увеличению габаритов, массы и стоимости телескопа.
Известны примерные значения апертуры для различных видов наблюдения. Для изучения поверхности Луны рекомендуются рефракторы с диаметром объектива 70-120 мм, для наблюдения за объектами солнечной системы нужна апертура 120-150 мм, для работы с туманностями и другими объектами глубокого космоса требуется апертура не менее 200 мм. Приобретение телескопа с еще большей апертурой оправдано, если планируется производить наблюдения в малонаселенной местности, где ночное небо максимально темное.
При выборе телескопа также нужно иметь в виду, что яркость получаемого изображения зависит не только от апертуры, но и от оптической системы. Например, из-за больших потерь в зеркальных системах 100 мм рефрактор примерно соответствует 120-130 мм рефлектору.
Диаметр объектива определяет максимальное полезное увеличение телескопа (см. "Макс. полезное увеличение").
50
Фокусное расстояние объектива, мм
Оптическая схема телескопа обычно состоит из двух частей — объектива и окуляра. Объектив создает промежуточное изображение удаленного объекта в фокальной плоскости, а окуляр подготавливает изображение для просмотра глазом.
Расстояние от оптического центра объектива до фокальной плоскости называется фокусным расстоянием.
От фокусного расстояния объектива зависит увеличение телескопа. Увеличение телескопа можно вычислить, разделив фокусное расстояние объектива на фокусное расстояние окуляра.
От фокусного расстояния также зависят относительное отверстие и светосила объектива. Светосила равна отношению диаметра объектива к фокусному расстоянию. Светосила характеризует количество света, которое объектив способен "захватывать". Чем выше эта величина, тем лучше видно в телескоп слабосветящиеся небесные объекты.
Чем больше фокусное расстояние, тем меньше светосила телескопа, но тем выше его увеличение. Чрезмерное увеличение при малой светосиле не имеет смысла, поэтому важно соблюдать баланс фокусного расстояния и остальных характеристик телескопа.
360
Относительное отверстие
Величина относительного отверстия объектива.
Оптическая схема телескопа обычно состоит из двух частей — объектива и окуляра. Объектив создает промежуточное изображение удаленного объекта в фокальной плоскости, а окуляр подготавливает изображение для просмотра глазом.
Относительное отверстие равно отношению апертуры (диаметра объектива) к его фокусному расстоянию. Обычно эта величина обозначается как "1:8". Относительное отверстие показывает светосилу объектива, то есть его способность собирать максимальное количество света. Самыми светосильными считаются короткофокусные телескопы с относительным отверстием 1:4-1:6, длиннофокусные объективы обладают невысокой светосилой 1:10-1:15, телескопы с относительным отверстием 1:6-1:10 считаются универсальными.
f/7,2
Полезное увеличение, крат 100
Посадочный диаметр окуляра, дюйм
Посадочный диаметр сменного окуляра.
Оптическая схема телескопа обычно состоит из двух частей — объектива и окуляра. Объектив создает промежуточное изображение удаленного объекта в фокальной плоскости, а окуляр подготавливает изображение для просмотра глазом.
Увеличение телескопа можно вычислить, разделив фокусное расстояние объектива на фокусное расстояние окуляра.
Во многих телескопах используются сменные окуляры. Обычно в комплекте поставляется несколько штук, обеспечивающих различное увеличение. Помимо штатных, можно приобрести дополнительные окуляры. При этом важно помнить о посадочном диаметре. Значения посадочного диаметра стандартизованы. Большинство сменных окуляров имеют диаметр 1.25 или 2 дюйма.
Если телескоп рассчитан на двухдюймовые окуляры, то с помощью простого переходника, который обычно поставляется в комплекте, можно устанавливать на него 1.25-дюймовые окуляры.
  • 1,25
Увеличение линзы Барлоу, х
Линза Барлоу устанавливается перед окуляром и позволяет поднять увеличение телескопа в 2- 3 раза (в зависимости от кратности своего увеличения).
3

Установка

Материал штатива
Основная задача штатива – обеспечить надежную фиксацию телескопа и минимизировать возможную тряску во время наблюдения за небесными объектами. Для этого лучше всего подходят массивные штативы, изготовленные из стали.
Если вы планируете брать телескоп в поездки, то стоит обеспокоиться весом телескопа и штатива. Для этих целей подойдут штативы из алюминиевого сплава.
алюминий
Монтировка
Монтировка — это механизм для наведения телескопа на изучаемый объект звездного неба.
Различают два основных типа монтировок — азимутальную и экваториальную.
Азимутальная монтировка по своей конструкции похожа на панорамную головку от штатива для фототехники. Она может наклонять телескоп вверх и вниз (регулировать положение телескопа по высоте) и поворачивать его влево и вправо (изменять положение по азимуту).
Азимутальная монтировка имеет простую конструкцию, поэтому удобна в использовании и обходится дешевле экваториальной. Кроме того, она подходит для наблюдения наземных объектов. Азимутальная монтировка имеет существенный недостаток. Ось вращения Земли и ось телескопа при азимутальной монтировке не совпадают, поэтому для компенсации вращения Земли необходимо постоянно перестраивать телескоп сразу по двум плоскостям. Это усложняет эксплуатацию прибора и делает невозможным фотографирование звездного неба с длительными выдержками.
Некоторые азимутальные монтировки могут управляться компьютером (см. "Автоматическое наведение"), что во многом упрощает наведение телескопа и коррекцию его положения во время наблюдений.
Азимутальная монтировка рекомендована начинающим астрономам.
Монтировку Добсона можно считать простейшим вариантом азимутальной монтировки. Она может выполняться в настольном и напольном вариантах.
Экваториальная монтировка, так же как и азимутальная, имеет две оси вращения. Эти оси наклоняемы, так что одну ось можно выставлять параллельно оси вращения Земли, а вторую — в плоскости небесного экватора. В результате для компенсации движения Земли достаточно поворота телескопа в одной плоскости.
Экваториальная монтировка позволяет наводить телескоп, используя координаты звездного неба, что необходимо для поиска неярких небесных объектов. Также она прекрасно подходит для фотографирования звездного неба.
Перед использованием экваториальной монтировки необходимо провести ее юстировку.
  • азимутальная
Искатель
Тип искателя телескопа.
Искатель – это специальное устройство для предварительного наведения телескопа на изучаемый объект. Поле зрение искателя больше, чем у телескопа, поэтому с помощью него намного проще «поймать» наблюдаемую звезду или планету.
По конструкции искатели можно разделить на два типа: оптический и искатель с красной точкой.
Оптический искатель представляет собой миниатюрную зрительную трубу с увеличением 4-8x, оптическая ось которой параллельна оптической оси телескопа. Для наведения телескопа обычно используется перекрестие, которое видно в искателе.
Искатель с красной точкой работает по принципу коллиматорного прицела. На стеклянную пластину проецируется красная точка, которая всегда указывает на то место, куда направлен телескоп вне зависимости от положения глаза наблюдателя. Благодаря этому, не требуется вплотную приближать глаз к искателю для наведения телескопа. Искатель с красной точкой не увеличивает изображение и обеспечивает широкое поле зрения.
В некоторых телескопах искатель отсутствует, но предусмотрена возможность установки опционального искателя (он приобретается отдельно).
  • оптический

Дополнительно

Уровень пользователя
  • для начинающих
  • для детей
Предмет наблюдения
  • наземные объекты
  • планеты Солнечной системы